Riccardo Comin

Riccardo Comin

Riccardo Coming

Career Development Associate Professor of Physics

Research
Professor Comin’s research explores the novel phases of matter that can be found in electronic solids with strong interactions, also known as quantum materials. In these systems, the interplay between different degrees of freedom – charge, spin, orbital, and lattice – leads to new flavors of emergent orders via the mechanism of electronic symmetry breaking. These phenomena include, among others: superconductivity, (anti)ferromagnetism, spin-density-waves, charge order, ferroelectricity, orbital order, and any combination thereof. Our lab adopts a combination of synthesis, scattering, and spectroscopy to obtain a comprehensive picture of these intriguing phenomena. Resonant X-ray scattering and spectroscopy are used to reveal the emergent collective phases of electronic quantum matter. Optical probes (Raman scattering and optical polarimetry) are a complementary tool for studying electronic symmetry breaking in the same systems. We additionally uses photoelectron spectroscopy to measure the energy-momentum spectrum of single-particle excitations in strongly correlated electron systems and topological electronic materials. The quantum materials we investigate are transition metal-based compounds hosting exotic phases of quantum matter that include high-temperature superconductivity, complex magnetism, and charge/spin-density-waves. We have historically studied single-crystalline bulk materials, and more recently have focused on 2D nanomaterials to explore emergent phenomena in the 2D quantum limit.

Biography
Riccardo Comin joined MIT as an Assistant Professor of Physics in July 2016. He completed his undergraduate studies at the Universita’ degli Studi di Trieste in Italy, where he also obtained a M.Sc. in Physics in 2009. Later, he pursued doctoral studies at the University of British Columbia, Canada, earning a PhD in 2013. Since 2014 he is an NSERC postdoctoral fellow at the University of Toronto. For his work using synchrotron-based x-ray scattering methods on quantum materials and electrically-tuned optoelectronic materials, he was recently selected as recipient of the Bancroft Thesis Award (2014), Fonda-Fasella Award (2014), John Charles Polanyi Prize in Physics (2015), McMillan Award (2015), and Bryan R. Coles prize (2016).

Contact
Email: rcomin@mit.edu
Phone: 617-253-7834
Website: http://scattering.mit.edu/
Office: 13-2153

LinkedIn: https://www.linkedin.com/in/riccardo-comin-94267916/

Administrative Assistant:
Gerry Miller
Email: gerrym@mit.edu
Phone: 617-253-4829
Office: 13-2029